Bifurcation phenomena in two-dimensional piecewise smooth discontinuous maps.

نویسندگان

  • Biswambhar Rakshit
  • Manjul Apratim
  • Soumitro Banerjee
چکیده

In recent years the theory of border collision bifurcations has been developed for piecewise smooth maps that are continuous across the border and has been successfully applied to explain nonsmooth bifurcation phenomena in physical systems. However, there exist a large number of switching dynamical systems that have been found to yield two-dimensional piecewise smooth maps that are discontinuous across the border. In this paper we present a systematic approach to the problem of analyzing the bifurcation phenomena in two-dimensional discontinuous maps, based on a piecewise linear approximation in the neighborhood of the border. We first motivate the analysis by considering the bifurcations occurring in a familiar physical system-the static VAR compensator used in electrical power systems-and then proceed to formulate the theory needed to explain the bifurcation behavior of such systems. We then integrate the observed bifurcation phenomenology of the compensator with the theory developed in this paper. This theory may be applied similarly to other systems that yield two-dimensional discontinuous maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Border Collision Bifurcations in n-Dimensional Piecewise Linear Discontinuous Maps

Abstract. In this paper we report some important results that help in analizing the border collision bifurcations that occur in n-dimensional discontinuous maps. For this purpose, we use the piecewise linear approximation in the neighborhood of the plane of discontinuity. Earlier, Feigin had made a similar analysis for general n-dimensional piecewise smooth continuous maps. Proceeding along sim...

متن کامل

Border-Collision bifurcations in One-Dimensional Discontinuous Maps

We present a classification of border-collision bifurcations in one-dimensional discontinuous maps depending on the parameters of the piecewise linear approximation in the neighborhood of the point of discontinuity. For each range of parameter values we derive the condition of existence and stability of various periodic orbits and of chaos. This knowledge will help in understanding the bifurcat...

متن کامل

The Dynamics of Regularized Discontinuous Maps with Applications to Impacting Systems

One-dimensional piecewise-smooth discontinuous maps (maps with gaps) are known to have surprisingly rich dynamics, including periodic orbits with very high period and bifurcation diagrams showing period-adding or period-incrementing behavour. In this paper we study a new class of maps, which we refer to as regularised one-dimensional discontinuous maps, because they give very similar dynamics t...

متن کامل

Codimension-2 Border Collision, Bifurcations in One-Dimensional, Discontinuous Piecewise Smooth Maps

We consider a two-parametric family of one-dimensional piecewise smooth maps with one discontinuity point. The bifurcation structures in a parameter plane of the map are investigated, related to codimension-2 bifurcation points defined by the intersections of two border collision bifurcation curves. We describe the case of the collision of two stable cycles of any period and any symbolic sequen...

متن کامل

Bifurcations in One-Dimensional Piecewise Smooth Maps—Theory and Applications in Switching Circuits

The dynamics of a number of switching circuits can be represented by one-dimensional (1-D) piecewise smooth maps under discrete modeling. In this paper we develop the bifurcation theory of such maps and demonstrate the application of the theory in explaining the observed bifurcations in two power electronic circuits.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 20 3  شماره 

صفحات  -

تاریخ انتشار 2010